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Displacement control crack-growth instability in 
an elastic-softening material 
Part I Linear e/astic ana/ysis for bend specimen configuration 
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The criterion for a cusp catastrophe type of crack-growth instability in an elastic-softening 
material that is subjected to displacement control loading conditions has been investigated. 
Attention was focused on the behaviour of a material whose softening-zone size was very small in 
comparison with a solid's characteristic dimensions, because this facilitates a simple linear elastic 
analysis. Special consideration was given to the behaviour of an edge-cracked solid that was 
subjected to bending deformation, and the results complement those obtained by Carpinteri, who 
analysed the behaviour of an elastic-softening material which had a very large softening-zone 
size. 

1. Introduction 
There are several types of material such as ceramics, 
concretes, cements and fibre-reinforced composites 
where there is a softening zone behind a propagating 
crack tip. Within this zone a restraining stress acts 
between the crack faces, and this stress is related (via 
the material softening law) to the relative displace- 
ment of the crack faces. The restraining stress is oper- 
ative until the opening at the trailing edge of the 
softening zone becomes sufficient for the restraining 
stress to fall to zero. Upon loading a solid containing 
a zone-free crack, the crack tip remains stationary 
until the stress intensity attains a critical value, K~c, 
when the material fractures at the crack tip. Then, 
with continued loading, the crack extends and the 
restraining (softening) zone increases in size until it 
becomes fully developed, i.e. until the opening at the 
trailing edge of the zone (the original crack tip) attains 
a critical value. Thereafter the crack continues to 
extend with a constant opening at the trailing edge of 
the softening zone. Particular consideration has been 
given [1-6] to the relation between the crack tip stress 
intensity, K, as measured at the leading edge of the 
softening zone, and the crack extension; this relation 
depends on a variety of factors: the geometrical config- 
uration, loading pattern, the softening law and the 
magnitude of K~c 

Carpinteri [7] has recently focused attention on the 
global response of an elastic-softening solid. He in- 
vestigated the behaviour of a material whose fully 
developed softening-zone size is very large, and ana- 
lysed the model of an edge-cracked solid that is sub- 
jected to three-point bending deformation. Particular 
consideration was given to the criterion for there to be 
a cusp catastrophe type of displacement control crack- 
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growth instability, i.e. both load and displacement 
decrease during crack extension. By analysing a range 
of geometrical configurations where the solid width, 
length and crack depth were scaled up proportionally, 
Carpinteri showed that a cusp in the load-displace- 
ment record was favoured by large dimensions, and 
also by a small crack depth-solid width ratio. He 
referred to experimental results ]-8] which support the 
theoretical predictions. 

The present work also investigated the problem of 
displacement control crack-growth instability for the 
bend specimen configuration, but for the case where 
the softening zone was very small in relation to other 
characteristic dimensions of the configuration, i.e. at 
the opposite end of the scale of material behaviour to 
that considered by Carpinteri [7]. The theoretical 
analysis defines the condition for a cusp catastrophe 
type of crack-growth instability, and shows how it 
depends on the various geometrical parameters of the 
configuration: solid width, solid length and crack 
depth. 

2. The s o f t e n i n g - z o n e  size 
Consider, like Carpinteri [7], the situation where 
KIC -~ 0, i.e. the fracture toughness of the matrix ma- 
terial is presumed to be negligible. For a semi-infinite 
crack in an infinite solid subjected to remote loading 
conditions, and with Mode I plane strain deformation, 
it has been shown [9] that the size, Re, of the softening 
zone when it is fully developed, i.e. when the opening 
at the trailing edge attains a critical value, go, at which 
the restraining stress between the crack faces becomes 
zero, is not particularly sensitive to the details of the 
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softening law, though it is dependent on the max- 
imum stress, Pc, i.e. the stress at the crack tip, and 8c. 
Rc is approximately equal to the value for the 
Dugdale-Bilby-Cottrell-Swinden (DBCS) model 
[10, 11] @here the stress is constant within the soften- 
ing zone, i.e. 

0.40 Eo 8c 
Rc (1) 

Pc 

where E0 = E/(1 - v2), E being Young's modulus and 
v being Poisson's ratio. Additionally, use of the J path 
independent integral approach [12] gives the value of 
the crack tip stress intensity, Ko, associated with the 
attainment of this state as 

Kc = Eo p(u)duJ (2) 

where u is the relative displacement of the crack faces 
and p(u) is the restraining stress. With a linear soften- 
ing law for which 

(u) p(u) = Pc 1 - ~ (3) 

Equations 2 and 3 give 

Kc = ( E ~  1/2 (4) 

With such a linear law, Equations 1 and 4 show that 
the fully developed softening-zone size can be equiva- 
lently expressed in the form 

0.80K~ 
Rc p2 (5) 

Carpinteri [7], who assumed a linear softening 
law, examined the behaviour of a concrete-like 
material with Eo =400000kgcm -2 ( ~ 4 0 0 M P a ) ,  
po = 40 kg cm- 2 (~  4 x 10- 2 MPa) and 6c = 0.005 cm, 
whereupon Equation 1 gives Rc ~ 20 cm; the fully de- 
veloped softening-zone size is therefore large, even 
though the toughness (see Equation 4) associated with 
a fully developed softening zone is very small 
(2 x 10 .2 MPam~/2), this being primarily due to the 
low Pc value. Foote et al. [2] examined the behaviour 
of a cellulose/asbestos fibre-reinforced mortar with 
Eo = 6000 MPa, Pc = 6 MPa and 8c = 0.08 cm; as- 
suming that the matrix has no fracture resistance, 
Equation 1 gives Rc = 32 cm, again a very large value, 
even though the toughness associated with a fully 
developed softening zone (see Equation 4) is low 
(3.79 MPa ml/2). 

The magnitude of Rc provides a guide as to when 
the material behaviour can be regarded as being line- 
arly elastic, with crack extension being viewed in 
terms of the stress intensity factor, K, being equal to 
Kc, as given by Equation 2 for a general softening law, 
and by Equation 4 for a linear softening law. The 
required condition is that Rc should be small in com- 
parison with the characteristic dimensions of the solid 
under consideration. This condition is satisfied with 
the materials investigated by Carpinteri [7] and Foote 
et al. [2], only when these characteristic dimensions 
are very large indeed. However, with some materials, 
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Rc can be fairly small; thus at the other extreme of 
material behaviour, with a ceramic for which the re- 
straining stress between the crack faces is provided by 
the untangling of interlocking crystals [1], typical 
input values are Eo = 350 x 103 MPa, po = 30 MPa, 
8c=2~tm,  and then Equation 1 gives R c ~  lcm,  
which is much smaller than the Rc values for the 
materials studied by Carpinteri [7] and Foote et al. 
[2]. The remainder of this paper will be devoted to the 
situation where the crack extension condition is 
K = Kc and the material behaviour is linearly elastic; 
the concern is, therefore, with the case where the 
softening-zone size is small in comparison with the 
characteristic dimensions of a solid. 

3. General criterion for a cusp 
catastrophe type of displacement 
control crack-growth instability 

Assume that an elastic solid of thickness B deforms 
under Mode ! plane strain conditions, the cracked 
solid being subjected to a load, P, which generates 
a load-point displacement, A, that is related to P via 
the relation 

A = CMP (6) 

where CM is a compliance function which is dependent 
on the crack size a; CM is related to the stress intensity, 
K, by the standard relation 

dCM 

da 

2 B K  2 

Eo P2 

2H 2 

EoB 
(7) 

and 

dH 
0 = H 6 P  + ~ a  PSa (10) 

whereupon elimination of 6a between Equations 9 and 
10 gives 

8p - CM -- U \  da / d a ] J  (11) 

It follows from Equations 7, 10 and 11 that the condi- 
tion for there to be a cusp catastrophe type of dis- 
placement control instability, i.e. both the load, P, and 
the displacement, A, decrease at the onset of crack 
extension (Fig. 1), is 

dH 
> 0 (12) 

da 

if K is expressed in the form K = H P / B  where H is 
a function of the crack size. Because crack extension is 
assumed to occur when K = Kc, the crack extension 
condition is 

H P  
/ ( c  - (8 )  

B 

Differentiation of Equations 6 and 8 gives respectively 

dCM 
8A = CMSP + ~-a PSa (9) 



q, 

Figure 1 A schematic representation of a cusp catastrophe type of 
displacement control crack instability at the onset of crack 
extension. 

TABLE I Values of M and 0 for a range of a/W values and for 
two specific L/W values 

- -  F S 
W BWSI2K c 12K~ 

L/W=4 L/W= 10 

0.1 1.042 0.285 0.062 0.073 0.029 
0.2 1.048 0.201 0.234 0.056 0.021 
0.3 1.109 0.155 0.510 0.049 0.017 
0.4 t.247 0.119 0.972 0.044 0.014 
0.5 1.497 0.088 1.800 0.042 0.012 
0.6 1.917 0.063 3.250 0.041 0.010 
0.7 2.774 0.041 6.667 0.044 0.010 
0.8 4.831 0.022 16.000 0.049 0.009 
0.9 12.500 0.008 66.000 0.068 0.01 t 
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Figure 2 The configuration analysed in the paper; the solid 
thickness in the direction of the figure normal is B. 

Fur thermore,  the relative rotation, 0, of the ends of the 
beam is given by the expression 

O MLEoI 24M ( W )  - + E o B ~ S  (16) 

where the first term on the r ight-hand side is the 
contr ibut ion from the uncracked configuration, with 
I - BW3/12 being the beam's  moment  of inertia. The 
second term is due to the crack, with the function 
S(a/W) being expressed in graphical form [13]. Equa- 
tions 15 and 16 can be re-written in the forms 

and 

CM > 2 ~-a j l \ ~ - a 2  ) (13) 

The preceding general analysis has been with regard 
to a loading condi t ion where a load P generates 
a load-point  displacement, A. However,  the same con- 
ditions (Equations 12 and 13) apply to the case where 
an applied moment ,  M, generates a rotat ion 0, with 
0 = C M M  and K = HM/B. 

4. The behaviour of an edge-cracked 
beam subjected to bending 
deformat ion  

This section analyses the behaviour  of a rectangular  
beam of length, L, thickness, B, and width, W, contain- 
ing an edge crack with depth a at the beam mid- 
section (Fig. 2). The ends of  the beam are subjected to 
a relative rota t ion 0, which is associated with a mo-  
ment  M. The stress intensity, K, for this configuration, 
assuming pure bending, is given in the form [13] 

6M(~a)1/2 (--~) 
K - BW 2 F (14) 

where F(a/W) has been expressed in graphical form 
[13]. Consequently,  the crack extension condit ion 
K = Kc becomes 

6M (~a) 1/2 [ a \ 
K c -  (15) \Wl 

M = 1 . 1 F (17) 
B W 3/2 Kc 6n*/~ ~ 

E 0 m l / 2 0  _ [L+ 2S(~)]/6nl12[a\'/2t ~) FtW)/a\ 
(18) 

These relations allow both M and 0 to be obtained for 
the complete spectrum of (a/W) values; the results are 
given in Table I for the two cases L/W = 4 (the case 
analysed by Carpinteri  [7]) and L/W = 10. The re- 
suits are also shown in Fig. 3, the arrowed points 
referring to specific a/W values. Recognizing that 
M and 0 both increase and are linearly related during 
loading prior to crack extension, Fig. 3 shows that 
there is a cusp catastrophe type of displacement con- 
trol crack-growth instability at the onset of crack 
extension if a/W~0.6 when L/W = 4 and if a/WF0.8 
when L/W = 10. The range of a/W values over which 
there is a cusp instability is, therefore, broader  as the 
ratio L/W increases. The analysis shows that this 
range is a function only of the geometrical configura- 
tion (see Equat ion  18) and does not  depend on the 
material 's  properties (Kr Fur thermore,  the criterion 
for a cusp instability depends on the two dimension- 
less parameters,  a/W and L/W, but not  on the dimen- 
sions themselves. 

To supplement these results, it is instructive to con- 
centrate on the special case where the remaining liga- 
ment  width b = W - a (see Fig. 2) is very small. In this 
case, the stress intensity, K, is given in the form [13] 

3.975M 
K - Bb3/2 (19) 
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Figure 3 The relation between the moment, M, and relative 
rotation, 0, of the ends of the beam during crack extension, for two 
specific L~ W values; the arrowed points refer to specific a/W values. 

whereupon the crack extension condition becomes 

3.975M 
Kc - Bb3/2 (20) 

Furthermore the relative rotation, 0, of the ends of the 
beam is given by the expression [13] 

ML 15.8M 
0 - EoI + EoBb ~ (21) 

where the first term on the right-hand side is the 
contribution from the uncracked configuration, with 
I - BW3/12 again being the beam's moment of iner- 
tia; the second term is due to the crack. To determine 
the condition for a cusp catastrophe type of displace- 
ment control crack-growth instability, we can proceed 
as in this section's earlier analysis for a general a/W. 
However instead, but equivalently, we will analyse the 
problem as a special case of the preceding section's 
general analysis. Thus comparing Equation 21 with 
Equation 6, when it is applied to the moment-rotation 
situation, i.e. A and P are replaced by, respectively, 0, 
and M, it follows that 

L 15.8 
CM -- EoI + EoBb ~ (22) 

and then, noting that 6a = - fib, Equation 13 shows 
that the criterion for a cusp catastrophe type of dis- 
placement control crack-growth instability is 

~ 0.66 (23) 

This relation shows that the critical b/W ratio above 
which there is a cusp-type instability decreases as the 
ratio L / W  increases, a conclusion that is consistent 
with that reached via the earlier analysis leading to 
Fig. 3. Indeed for both L / W  = 4, and L / W  = 10, the 
results given by Equation 23 are consistent with the 
curves in Fig. 3. 
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5. D i s c u s s i o n  
This work was concerned with the condition for 
a cusp catastrophe type of displacement control crack- 
growth instability in an elastic-softening material, 
with regard to an edge-cracked beam that was sub- 
jected to bending deformation by an applied relative 
rotation of the ends of the beam. The work focused on 
the behaviour of a material whose fully developed 
softening-zone size is very small when compared with 
the solid's characteristic dimensions, thus com- 
plementing the work of Carpinteri [7], who analysed 
the behaviour of a material whose fully developed 
softening size is large (he also considered three-point 
bending deformation, in contrast to the present pa- 
per's uniform bending deformation, but this difference 
is not important).. The present paper's theoretical re- 
sults clearly show that the criterion for a cusp-type 
instability is independent of the material properties, 
i.e. Ko, but depends solely on the configuration's 
length parameters. The criterion can be expressed in 
the form 

a 
- -  < 9 ( 2 4 )  
W 

where a is the crack depth, W the beam width and 
L the beam length, with 9(L/W) being an increasing 
function of L/W; the criterion is a/W~0.6 for 
L / W  = 4 and a/W'~0.8 for L / W  = 10. It is immedi- 
ately observed that the criterion for a cusp-type insta- 
bility depends on the ratios a/W and L / W  but not on 
the actual magnitudes of the dimensions. The criterion 
therefore remains the same if the solid dimensions are 
scaled proportionally, a result that is in contrast to the 
results [7] for a material with a large softening zone 
size, for which the criterion for a cusp-type instability 
is not as simple as Equation 17. Although the present 
analysis has been restricted to the edge-cracked bend 
specimen configuration, similar conclusions are ex- 
pected for other configurations where the crack tip 
stress intensity increases with crack size for a fixed 
loading, i.e. Equation 12. Namely, that provided the 
softening-zone size is very small, the criterion for 
a cusp catastrophe type of displacement control 
crack-growth instability is independent of the material 
properties, but is dependent on the ratios of the con- 
figuration's geometrical parameters though not on the 
actual magnitudes of these parameters. Furthermore 
the range of crack sizes over which there is a cusp-type 
instability increases with the configuration's compli- 
ance (i.e. as L / W  increases with the present paper's 
configuration). 

It is important to emphasize that this work has been 
concerned with the behaviour of a material whose 
softening-zone size was very small, whereas Carpin- 
teri's study [7] focused on the behaviour of a material 
whose softening-zone size was large; extensions to this 
work will attempt to bridge these two extremes of 
material behaviour. Thus Part II [14] analyses the 
model of an infinite solid containing two symmetric- 
ally situated deep cracks and with tensile loading of 
the small remaining ligament. With this model, 
a simple analytical treatment is possible across the 



complete spectrum of material behaviour, provided 
that the stress within the softening zone retains a con- 
stant value of Pc. It is, therefore, possible to ascertain 
how the criterion for a cusp-type instability depends, 
in a COul~led manner, on both material and geomet- 
rical parameters. It is also the intention to develop 
a type of "small-scale yielding" analysis which is ap- 
plicable to a material whose softening zone is not 
infinitesimally small, as has been assumed in the pres- 
ent analysis, but instead is a small fraction of the 
solid's characteristic dimensions; such a general ana- 
lysis should be applicable to any configuration. 

Finally, it is worth emphasizing that the importance 
of a cusp-type instability stems from the fact that 
many engineering structures are subjected to displace- 
ment control loading. With such an instability, the 
load drops immediately, and although there is stabil- 
ity on the lower portion of the load-displacement 
curve see (Fig. 1) according to the results of a static 
analysis, the energy associated with the load reduction 
may well lead to catastrophic dynamic failure of the 
structure. This possibility is the motivation for re- 
search in this particular area of materials engineering. 
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